Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Virol ; 97(3): e0186522, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2259670

ABSTRACT

Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable ß5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
2.
Nanoscale advances ; 4(6):1527-1532, 2022.
Article in English | EuropePMC | ID: covidwho-2033703

ABSTRACT

The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new potential sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In this study we investigated the interaction of this protein with two types of titania nanoparticles by NMR and discovered that while lactate capped particles essentially did not interact with the protein chain, the aminoalcohol-capped ones showed strong complexation with a distinct part of an ordered α-helix fragment. The structure of the forming complex was elucidated based on NMR data and theoretical calculation. To the best of our knowledge, this is the first time that a tailored titanium oxide nanoparticle was shown to interact specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein, possibly interfering with its functionality. Titanium dioxide nanoparticles can be tailored to interact specifically with SARS-CoV-2 nsp1 protein, forming, according to NMR studies, a stable complex, which structure was elucidated based on a molecular modeling approach.

3.
J Virol ; 96(15): e0075322, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1962094

ABSTRACT

Circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human population leads to further viral evolution. The new variants that arise during this evolution are more infectious. Our data suggest that newer variants have shifted from utilizing both cathepsin/endosome- and TMPRSS2-mediated entry mechanisms to rely on a TMPRSS2-dependent entry pathway. Accordingly, only the early lineages of SARS-CoV-2 are capable of infecting and forming syncytia in Vero/ACE2 cells which lack TMPRSS2 expression. The presence of an intact multibasic furin cleavage site (FCS) in the S protein was a key requirement for cell-to-cell fusion. Deletion of FCS makes SARS-CoV-2 more infectious in vitro but renders it incapable of syncytium formation. Cell-to-cell fusion likely represents an alternative means of virus spread and is resistant to the presence of high levels of neutralizing monoclonal antibodies (MAbs) and immune sera in the media. In this study, we also noted that cells infected with SARS-CoV-2 with an intact FCS or alphavirus replicon expressing S protein (VEErep/S) released high levels of free S1 subunit. The released S1 is capable of activating the TLR4 receptor and inducing a pro-inflammatory response. Thus, S1 activation of TLR4 may be an important contributor to SARS-CoV-2-induced COVID-19 disease and needs to be considered in the design of COVID mRNA vaccines. Lastly, a VEErep/S-replicon was shown to produce large amounts of infectious, syncytium-forming pseudoviruses and thus could represent alternative experimental system for screening inhibitors of virus entry and syncytium formation. IMPORTANCE The results of this study demonstrate that the late lineages of SARS-CoV-2 evolved to more efficient use of the TMPRSS2-mediated entry pathway and gradually lost an ability to employ the cathepsins/endosome-mediated entry. The acquisition of a furin cleavage site (FCS) by SARS-CoV-2-specific S protein made the virus a potent producer of syncytia. Their formation is also determined by expression of ACE2 and TMPRSS2 and is resistant to neutralizing human MAbs and immune sera. Syncytium formation appears to be an alternative means of infection spread following the development of an adaptive immune response. Cells infected with SARS-CoV-2 with an intact FCS secrete high levels of the S1 subunit. The released S1 demonstrates an ability to activate the TLR4 receptor and induce pro-inflammatory cytokines, which represent a hallmark of SARS-CoV-2 pathogenesis. Alphavirus replicons encoding SARS-CoV-2 S protein cause spreading, syncytium-forming infection, and they can be applied as an experimental tool for studying the mechanism of syncytium formation.


Subject(s)
COVID-19 , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Evolution, Molecular , Furin/metabolism , Humans , Immune Sera , SARS-CoV-2/genetics , Signal Transduction , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Toll-Like Receptor 4 , Virus Internalization
4.
Nanoscale Adv ; 4(6): 1527-1532, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1721605

ABSTRACT

The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new potential sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In this study we investigated the interaction of this protein with two types of titania nanoparticles by NMR and discovered that while lactate capped particles essentially did not interact with the protein chain, the aminoalcohol-capped ones showed strong complexation with a distinct part of an ordered α-helix fragment. The structure of the forming complex was elucidated based on NMR data and theoretical calculation. To the best of our knowledge, this is the first time that a tailored titanium oxide nanoparticle was shown to interact specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein, possibly interfering with its functionality.

5.
PLoS One ; 16(12): e0251834, 2021.
Article in English | MEDLINE | ID: covidwho-1556859

ABSTRACT

Structural characterization of the SARS-CoV-2 full length nsp1 protein will be an essential tool for developing new target-directed antiviral drugs against SARS-CoV-2 and for further understanding of intra- and intermolecular interactions of this protein. As a first step in the NMR studies of the protein, we report the 1H, 13C and 15N resonance backbone assignment as well as the Cß of the apo form of the full-lengthSARS-CoV-2 nsp1 including the folded domain together with the flaking N- and C- terminal intrinsically disordered fragments. The 19.8 kD protein was characterized by high-resolution NMR. Validation of assignment have been done by using two different mutants, H81P and K129E/D48E as well as by amino acid specific experiments. According to the obtained assignment, the secondary structure of the folded domain in solution was almost identical to its previously published X-ray structure as well as another published secondary structure obtained by NMR, but some discrepancies have been detected. In the solution SARS-CoV-2 nsp1 exhibited disordered, flexible N- and C-termini with different dynamic characteristics. The short peptide in the beginning of the disordered C-terminal domain adopted two different conformations distinguishable on the NMR time scale. We propose that the disordered and folded nsp1 domains are not fully independent units but are rather involved in intramolecular interactions. Studies of the structure and dynamics of the SARS-CoV-2 mutant in solution are on-going and will provide important insights into the molecular mechanisms underlying these interactions.


Subject(s)
Magnetic Resonance Spectroscopy/methods , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , COVID-19/pathology , COVID-19/virology , Carbon-13 Magnetic Resonance Spectroscopy , Humans , Mutation , Nitrogen Isotopes/chemistry , Protein Structure, Secondary , Proton Magnetic Resonance Spectroscopy , SARS-CoV-2/isolation & purification , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
6.
J Virol ; 95(21): e0135721, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1476390

ABSTRACT

One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include (i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increases the positive charge of the surface of this domain, (ii) insertions into the NTD of heterologous peptides containing positively charged amino acids, and (iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide, and makes viruses less capable of syncytium formation. These viral adaptations result in higher affinity of viral particles to heparin, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers, and 2 orders of magnitude higher infectivity. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA-positive (RNA+) viruses, evolution to HS binding may result in virus attenuation in vivo. IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to the ACE2 receptor and, later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the NTD and in the P1' position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells, and decrease the genome equivalent to PFU (GE/PFU) ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high-affinity interaction of the spikes with the ACE2 receptor.


Subject(s)
Evolution, Molecular , Heparitin Sulfate/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Adaptation, Biological , Animals , Binding Sites , Chlorocebus aethiops , Cytopathogenic Effect, Viral , DNA, Complementary , Furin/metabolism , Heparin/metabolism , Host-Pathogen Interactions , Protein Binding , Protein Domains , Protein Processing, Post-Translational , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Serial Passage , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Plaque Assay , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL